A superfamily of small potassium channel subunits: form and function of the MinK-related peptides (MiRPs)

Author:

ABBOTT GEOFFREY W.,GOLDSTEIN STEVE A. N.

Abstract

1. INTRODUCTION 3581.1 Summary 3581.2 Overview 3591.3 Four classes of pore-forming K+channel subunits – necessary and (sometimes) sufficient 3611.4 Soluble and peripheral membrane proteins that interact with P loop subunits to alter function 3621.5 Integral membrane proteins that interact with P loop subunits to alter function 3632. MinK DETERMINES THE FUNCTION OF MIXED CHANNEL COMPLEXES 3632.1 The KCNE1 gene product (MinK) gives rise to K+-selective currents and controversy 3632.2 MinK assembles with a P loop protein, KvLQT1, to form K+channels with unique function 3642.2.1 Single-channel conductance of KvLQT1 and MinK/KvLQT1 channels 3662.2.2 Other differences between KvLQT1 and MinK/KvLQT1 channels 3672.3 MinK assembles with HERG, another P loop subunit, to regulate channel activity 3682.4 MinK does not form chloride-selective ion channels 3683. EXPERIMENTAL AND NATURAL MinK MUTATIONS 3693.1 Site-directed mutations 3693.1.1 MinK mutation alters basic channel attributes and identifies key residues 3693.1.2 MinK is a Type I transmembrane peptide 3703.1.3 MinK is intimately associated with the IKspore 3703.1.4 The number of MinK subunits in IKschannel complexes 3723.2 KCNE1 mutations associated with arrhythmia and deafness alter IKschannel function 3733.3 Summary of MinK sites critical to IKschannel function 3744. MinK-RELATED PEPTIDES: AN EMERGING SUPERFAMILY 3744.1 KCNE2, 3 and 4 encode MinK-related peptides 1, 2 and 3 (MiRPs) 3744.2 MiRP1 assembles with a P loop protein, HERG, to form K+channels with unique function 3754.2.1 MiRP1 alters activation, deactivation and single-channel conductance 3764.2.2 MiRP1 alters regulation by K+ion and confers biphasic kinetics to channel blockade 3784.2.3 Stable association of MiRP1 and HERG subunits 3804.3 KCNE2 mutations are associated with arrhythmia and decreased K+flux 3834.4 Summary of the evidence that cardiac IKrchannels are MiRP1/HERG complexes 3855. MinK-RELATED PEPTIDES: COMMONALTIES AND IMPLICATIONS 3865.1 Genetics and structure 3865.2 Cell biology and function 3876. ANSWERS, SOME OUTSTANDING ISSUES, CONCLUSIONS 3877. ACKNOWLEDGEMENTS 3898. REFERENCES 389MinK and MinK-related peptide 1 (MiRP1) are integral membrane peptides with a single transmembrane span. These peptides are active only when co-assembled with pore-forming K+ channel subunits and yet their role in normal ion channel behaviour is obligatory. In the resultant complex the peptides establish key functional attributes: gating kinetics, single-channel conductance, ion selectivity, regulation and pharmacology. Co-assembly is required to reconstitute channel behaviours like those observed in native cells. Thus, MinK/KvLQT1 and MiRP1/HERG complexes reproduce the cardiac currents called IKs and IKr, respectively. Inherited mutations in KCNE1 (encoding MinK) and KCNE2 (encoding MiRP1) are associated with lethal cardiac arrhythmias. How these mutations change ion channel behaviour has shed light on peptide structure and function. Recently, KCNE3 and KCNE4 were isolated. In this review, we consider what is known and what remains controversial about this emerging superfamily.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3