The development of single molecule force spectroscopy: from polymer biophysics to molecular machines

Author:

Bustamante CarlosORCID,Yan ShannonORCID

Abstract

Abstract The advent of single-molecule force spectroscopy represents the introduction of forces, torques, and displacements as controlled variables in biochemistry. These methods afford the direct manipulation of individual molecules to interrogate the forces that hold together their structure, the forces and torques that these molecules generate in the course of their biochemical reactions, and the use of force, torque, and displacement as tools to investigate the mechanisms of these reactions. Because of their microscopic nature, the signals detected in these experiments are often dominated by fluctuations, which, in turn, play an important role in the mechanisms that underlie the operation of the molecular machines of the cell. Their direct observation and quantification in single-molecule experiments provide a unique window to investigate those mechanisms, as well as a convenient way to investigate fundamental new fluctuation theorems of statistical mechanics that bridge the equilibrium and non-equilibrium realms of this discipline. In this review we have concentrated on the developments that occurred in our laboratory on the characterization of biopolymers and of molecular machines of the central dogma. Accordingly, some important areas like the study of cytoskeletal motors have not been included. While we adopt at times an anecdotal perspective with the hope of conveying the personal circumstances in which these developments took place, we have made every effort, nonetheless, to include the most important developments that were taking place at the same time in other laboratories.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3