EQUIVARIANT -THEORY OF GRASSMANNIANS

Author:

PECHENIK OLIVER,YONG ALEXANDER

Abstract

We address a unification of the Schubert calculus problems solved by Buch [A Littlewood–Richardson rule for the $K$-theory of Grassmannians, Acta Math. 189 (2002), 37–78] and Knutson and Tao [Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J.119(2) (2003), 221–260]. That is, we prove a combinatorial rule for the structure coefficients in the torus-equivariant $K$-theory of Grassmannians with respect to the basis of Schubert structure sheaves. This rule is positive in the sense of Anderson et al. [Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces, J. Eur. Math. Soc.13 (2011), 57–84] and in a stronger form. Our work is based on the combinatorics of genomic tableaux and a generalization of Schützenberger’s [Combinatoire et représentation du groupe symétrique, in Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976, Lecture Notes in Mathematics, 579 (Springer, Berlin, 1977), 59–113] jeu de taquin. Using our rule, we deduce the two other combinatorial rules for these coefficients. The first is a conjecture of Thomas and Yong [Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble) (2013), to appear]. The second (found in a sequel to this paper) is a puzzle rule, resolving a conjecture of Knutson and Vakil from 2005.

Publisher

Cambridge University Press (CUP)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis

Reference33 articles.

1. Gromov–Witten invariants on Grassmannians;Buch;J. Amer. Math. Soc.,2003

2. Group characters and algebra

3. K-théorie équivariante des tours de Bott. Application à la structure multiplicative de la K-théorie équivariante des variétés de drapeaux

4. Equivariant Schubert calculus and jeu de taquin;Thomas;Ann. Inst. Fourier (Grenoble),2013

5. Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux;Lascoux;C. R. Acad. Sci. Paris,1982

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. James reduced product schemes and double quasisymmetric functions;Advances in Mathematics;2024-07

2. What is a combinatorial interpretation?;Proceedings of Symposia in Pure Mathematics;2024

3. A web basis of invariant polynomials from noncrossing partitions;Advances in Mathematics;2022-10

4. Hook Formulas for Skew Shapes IV. Increasing Tableaux and Factorial Grothendieck Polynomials;Journal of Mathematical Sciences;2022-03

5. Equivariant K-Theory Classes of Matrix Orbit Closures;International Mathematics Research Notices;2021-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3