Early life adversity predicts an accelerated cellular aging phenotype through early timing of puberty

Author:

Hamlat Elissa J.ORCID,Neilands Torsten B.,Laraia Barbara,Zhang Joshua,Lu Ake T.,Lin Jue,Horvath Steve,Epel Elissa S.

Abstract

AbstractBackgroundThe current study examined if early adversity was associated with accelerated biological aging, and if effects were mediated by the timing of puberty.MethodsIn early mid-life, 187 Black and 198 White (Mage = 39.4, s.d.age = 1.2) women reported on early abuse and age at first menstruation (menarche). Women provided saliva and blood to assess epigenetic aging, telomere length, and C-reactive protein. Using structural equation modeling, we created a latent variable of biological aging using epigenetic aging, telomere length, and C-reactive protein as indicators, and a latent variable of early abuse using indicators of abuse/threat events before age 13, physical abuse, and sexual abuse. We estimated the indirect effects of early abuse and of race on accelerated aging through age at menarche. Race was used as a proxy for adversity in the form of systemic racism.ResultsThere was an indirect effect of early adversity on accelerated aging through age at menarche (b = 0.19, 95% CI 0.03–0.44), in that women who experienced more adversity were younger at menarche, which was associated with greater accelerated aging. There was also an indirect effect of race on accelerated aging through age at menarche (b = 0.25, 95% CI 0.04–0.52), in that Black women were younger at menarche, which led to greater accelerated aging.ConclusionsEarly abuse and being Black in the USA may both induce a phenotype of accelerated aging. Early adversity may begin to accelerate aging during childhood, in the form of early pubertal timing.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institute on Aging

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3