Comparison of different scoring methods based on latent variable models of the PHQ-9: an individual participant data meta-analysis

Author:

Fischer FelixORCID,Levis BrookeORCID,Falk CarlORCID,Sun Ying,Ioannidis John P. A.ORCID,Cuijpers PimORCID,Shrier IanORCID,Benedetti AndreaORCID,Thombs Brett D.ORCID,

Abstract

Abstract Background Previous research on the depression scale of the Patient Health Questionnaire (PHQ-9) has found that different latent factor models have maximized empirical measures of goodness-of-fit. The clinical relevance of these differences is unclear. We aimed to investigate whether depression screening accuracy may be improved by employing latent factor model-based scoring rather than sum scores. Methods We used an individual participant data meta-analysis (IPDMA) database compiled to assess the screening accuracy of the PHQ-9. We included studies that used the Structured Clinical Interview for DSM (SCID) as a reference standard and split those into calibration and validation datasets. In the calibration dataset, we estimated unidimensional, two-dimensional (separating cognitive/affective and somatic symptoms of depression), and bi-factor models, and the respective cut-offs to maximize combined sensitivity and specificity. In the validation dataset, we assessed the differences in (combined) sensitivity and specificity between the latent variable approaches and the optimal sum score (⩾10), using bootstrapping to estimate 95% confidence intervals for the differences. Results The calibration dataset included 24 studies (4378 participants, 652 major depression cases); the validation dataset 17 studies (4252 participants, 568 cases). In the validation dataset, optimal cut-offs of the unidimensional, two-dimensional, and bi-factor models had higher sensitivity (by 0.036, 0.050, 0.049 points, respectively) but lower specificity (0.017, 0.026, 0.019, respectively) compared to the sum score cut-off of ⩾10. Conclusions In a comprehensive dataset of diagnostic studies, scoring using complex latent variable models do not improve screening accuracy of the PHQ-9 meaningfully as compared to the simple sum score approach.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3