A proof-of-concept study applying machine learning methods to putative risk factors for eating disorders: results from the multi-centre European project on healthy eating

Author:

Krug I.ORCID,Linardon J.,Greenwood C.,Youssef G.,Treasure J.,Fernandez-Aranda F.,Karwautz A.,Wagner G.,Collier D.,Anderluh M.,Tchanturia K.,Ricca V.,Sorbi S.,Nacmias B.,Bellodi L.,Fuller-Tyszkiewicz M.

Abstract

Abstract Background Despite a wide range of proposed risk factors and theoretical models, prediction of eating disorder (ED) onset remains poor. This study undertook the first comparison of two machine learning (ML) approaches [penalised logistic regression (LASSO), and prediction rule ensembles (PREs)] to conventional logistic regression (LR) models to enhance prediction of ED onset and differential ED diagnoses from a range of putative risk factors. Method Data were part of a European Project and comprised 1402 participants, 642 ED patients [52% with anorexia nervosa (AN) and 40% with bulimia nervosa (BN)] and 760 controls. The Cross-Cultural Risk Factor Questionnaire, which assesses retrospectively a range of sociocultural and psychological ED risk factors occurring before the age of 12 years (46 predictors in total), was used. Results All three statistical approaches had satisfactory model accuracy, with an average area under the curve (AUC) of 86% for predicting ED onset and 70% for predicting AN v. BN. Predictive performance was greatest for the two regression methods (LR and LASSO), although the PRE technique relied on fewer predictors with comparable accuracy. The individual risk factors differed depending on the outcome classification (EDs v. non-EDs and AN v. BN). Conclusions Even though the conventional LR performed comparably to the ML approaches in terms of predictive accuracy, the ML methods produced more parsimonious predictive models. ML approaches offer a viable way to modify screening practices for ED risk that balance accuracy against participant burden.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3