Predicting prognosis for adults with depression using individual symptom data: a comparison of modelling approaches

Author:

Buckman J. E. J.ORCID,Cohen Z. D.,O'Driscoll C.,Fried E. I.,Saunders R.,Ambler G.,DeRubeis R. J.,Gilbody S.,Hollon S. D.,Kendrick T.,Watkins E.,Eley T.C.,Peel A. J.,Rayner C.,Kessler D.,Wiles N.,Lewis G.,Pilling S.

Abstract

Abstract Background This study aimed to develop, validate and compare the performance of models predicting post-treatment outcomes for depressed adults based on pre-treatment data. Methods Individual patient data from all six eligible randomised controlled trials were used to develop (k = 3, n = 1722) and test (k = 3, n = 918) nine models. Predictors included depressive and anxiety symptoms, social support, life events and alcohol use. Weighted sum scores were developed using coefficient weights derived from network centrality statistics (models 1–3) and factor loadings from a confirmatory factor analysis (model 4). Unweighted sum score models were tested using elastic net regularised (ENR) and ordinary least squares (OLS) regression (models 5 and 6). Individual items were then included in ENR and OLS (models 7 and 8). All models were compared to one another and to a null model (mean post-baseline Beck Depression Inventory Second Edition (BDI-II) score in the training data: model 9). Primary outcome: BDI-II scores at 3–4 months. Results Models 1–7 all outperformed the null model and model 8. Model performance was very similar across models 1–6, meaning that differential weights applied to the baseline sum scores had little impact. Conclusions Any of the modelling techniques (models 1–7) could be used to inform prognostic predictions for depressed adults with differences in the proportions of patients reaching remission based on the predicted severity of depressive symptoms post-treatment. However, the majority of variance in prognosis remained unexplained. It may be necessary to include a broader range of biopsychosocial variables to better adjudicate between competing models, and to derive models with greater clinical utility for treatment-seeking adults with depression.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3