Pleistocene extinctions: the pivotal role of megaherbivores

Author:

Owen-Smith Norman

Abstract

Two alternative hypotheses have been advanced to explain the demise of about half of the mammalian genera exceeding 5 kg in body mass in the later Pleistocene. One hypothesis invokes climatic change and resulting habitat transformations. This fails to predict the increased likelihood of extinctions with increasing body size, greater severity in both North and South America than in Eurasia or Australia, lack of simultaneous extinctions in Africa and tropical Asia, and the absence of extinctions at the end of previous glacial periods. The other hypothesis invokes human predation as the primary cause. This fails to explain the simultaneous extinctions of a number of mammalian and avian species not obviously vulnerable to human overkill. I propose a “keystone herbivore” hypothesis, based on the ecology of extant African species of megaherbivore, (i.e., animals exceeding 1,000 kg in body mass). Due to their invulnerability to non-human predation on adults, these species attain saturation densities at which they may radically transform vegetation structure and composition. African elephant can change closed woodland or thicket into open grassy savanna, and create open gaps colonized by rapidly-regenerating trees in forests. Grazing white rhinoceros and hippopotamus transform tall grasslands into lawns of more nutritious short grasses. The elimination of megaherbivores elsewhere in the world by human hunters at the end of the Pleistocene would have promoted reverse changes in vegetation. The conversion of the open parklike woodlands and mosaic grasslands typical of much of North America during the Pleistocene to the more uniform forests and prairie grasslands we find today could be a consequence. Such habitat changes would have been detrimental to the distribution and abundance of smaller herbivores dependent upon the nutrient-rich and spatially diverse vegetation created by megaherbivore impact. At the same time these species would have become more vulnerable to human predation. The elimination of megaherbivore influence is the major factor differentiating habitat changes at the end of the terminal Pleistocene glaciation from those occurring at previous glacial-interglacial transitions.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 294 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3