Evolution in a pelagic planktic system: A paleobiologic test of models of multispecies evolution

Author:

Hoffman Antoni,Kitchell Jennifer A.

Abstract

Two rival models of evolution in multispecies systems are tested against empirical species-level data. The two models are the Red Queen model of Van Valen as reformulated by Stenseth and Maynard Smith, which assumes that evolution is driven principally by biotic interactions, and the Stationary model of Stenseth and Maynard Smith, which assumes that evolution is propelled primarily by abiotic factors and will cease in the absence of changes in abiotic parameters. Testing refers to the models' predictions regarding the behavior of extinction and origination rates, and assumptions regarding equilibrium diversity and a constant effective environment. The data set includes the dates of origination and extinction for all coccolith, planktic foraminifer, and radiolarian species recorded in the Oligocene through Holocene, and all planktic diatom and silicoflagellate and ebridian species recorded in the Middle Miocene through Holocene in 111 DSDP sites of the low- to mid-latitude Pacific Ocean.The condition of stable specific age distribution over geologic time is met, which allows one to perform survivorship analysis on extinction rates. The best fit survivorship curve is a decreasing function of age for both coccolith and foraminifer species, and an increasing function of age for radiolarian species. Neither model predicts age dependence of the probability of extinction. The small disparity between these curves and age-independent curves for each group indicates, however, that an age-independent interpretation of extinction probability is a reasonable first approximation. Rates of origination are analyzed in terms of species accretion, introduced to represent the cumulative origination of species within a higher taxon as a function of the age or duration of the community. Accretion analysis indicates that the probability of accretion is both diversity-dependent and absolute time-dependent.The assumption of a constant effective environment is tested by polycohort analysis and nonparametric logistic regression analysis of true species cohorts. Both techniques indicate considerable variation in extinction probability over geologic time. When the predictions of the two evolutionary models are adjusted to take this variation into account, the results of both survivorship and accretion analysis seem to conform more closely to the predictions of the Red Queen than to the Stationary model. However, as the speed with which the effective environment changes is increased relative to speciation-extinction rates, it becomes increasingly difficult to differentiate patterns predicted by the two models. The assumption of equilibrium diversity can be neither corroborated nor rejected, since the species-level data are compatible with both an equilibrium and a nonequilibrium view of diversity behavior. Reservations concerning the basic assumptions of both models indicate an ultimate test requires that both models be reformulated to make precise and distinctive predictions under a varying effective environment.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference86 articles.

1. Patterns of communities in the tropics

2. Some comments on Van Valen's law of extinction

3. Paleoceanographic implications of Miocene deep-sea hiatuses

4. Oligocene to Recent calcareous nannoplankton from the Philippine Sea, Deep Sea Drilling Project Leg 59;Martini;Initial Reports DSDP.,1981

5. Taxonomic survivorship curves;Van Valen;Evol. Theory.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3