Modeling fossil plant form-function relationships: A critique

Author:

Niklas Karl J.

Abstract

Attempts to model form-function relationships for fossil plants rely on the facts that the physiological and structural requirements for plant growth, survival, and reproductive success are remarkably similar for the majority of extant and extinct species regardless of phyletic affiliation and that most of these requirements can be quantified by means of comparatively simple mathematical expressions drawn directly from the physical and engineering sciences. Owing in part to the advent and rapid expansion of computer technologies, the number of fossil plant form-function models has burgeoned in the last two decades and encompasses every level of biological organization ranging from molecular self-assembly to ecological and evolutionary dynamics. This recent and expansive interest in modeling fossil plant form-function relationships is discussed in the context of the general philosophy of modeling past biological systems and how the reliability of models can be examined (i.e., direct experimental manipulation or observation of the system being modeled). This philosophy is illustrated and methods of validating models are critiqued in terms of four models drawn from the author's work (the quantification of wind-induced stem bending stresses, wind pollination efficiency of early Paleozoic ovulate reproductive structures, population dynamics and species extinction in monotypic and “mixed” communities, and the adaptive radiation of early vascular land plants). The assumptions and logical (mathematical) consequences (predictions) of each model are broadly outlined, and, in each case, the model is shown to be overly simplistic despite its ability to predict the general or particular behavior or operation of the system modeled. Nonetheless, these four models, which illustrate some of pros and cons of modeling fossil form-function relationships, are argued to be pedagogically useful because, like all models, they expose the internal logical consistency of our basic assumptions about how organic form and function interrelate.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3