Morphogenesis of uniaxiate graptoloid colonies—a mathematical model

Author:

Urbanek Adam,Uchmański Janusz

Abstract

Morphological gradients in graptoloid colonies are explained by the production and diffusion of a morphogen from the sicula distalwards. Size of the thecae is inversely related to the amount of morphogen present. The graduate decrease of morphogen is given by a set of algebraic equations, and its effect on zooid growth is described by a modified Michaelis-Menten relationship. Changes in size of thecae computed on the basis of these equations fit the changes observed in graptolite colonies. Sets of differential equations are also given to describe the rate of morphogen diffusion and some other processes possibly involved in the development of uniaxiate graptoloid colonies. The suggested basic model of these colonies can be completed by a number of additional assumptions; however, computer experiments reveal that such assumptions do not affect the main properties of the model, namely the appearance of graded series of thecae. New evidence for regeneration of the sicular portion of the broken rhabdosome is presented, providing arguments that morphogen was produced by the siculozooid as a single bolus of secretion. Some local exclusions from the regular size gradient are discussed, and tentative explanations are suggested.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. An attempt at biological interpretation of evolutionary changes in graptolite colonies;Urbanek;Acta Palaeontologica Polonica,1960

2. The self-control of growth;Stebbing;Spectrum,1979

3. Triangulate monograptids from the monograptus gregarius zone (lower llandovery) of the rheidol gorge (cardiganshire)

4. Pattern Formation in Biological Development

5. Isolation and characterization of a low-molecular-weight substance activating head and bud formation in Hydra;Schaller;Journal of Embryology and Experimental Morphology,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3