Exact recovery of Granger causality graphs with unconditional pairwise tests

Author:

Kinnear R. J.ORCID,Mazumdar R. R.ORCID

Abstract

AbstractWe study Granger Causality in the context of wide-sense stationary time series. The focus of the analysis is to understand how the underlying topological structure of the causality graph affects graph recovery by means of the pairwise testing heuristic. Our main theoretical result establishes a sufficient condition (in particular, the graph must satisfy a polytree assumption we refer to as strong causality) under which the graph can be recovered by means of unconditional and binary pairwise causality testing. Examples from the gene regulatory network literature are provided which establish that graphs which are strongly causal, or very nearly so, can be expected to arise in practice. We implement finite sample heuristics derived from our theory, and use simulation to compare our pairwise testing heuristic against LASSO-based methods. These simulations show that, for graphs which are strongly causal (or small perturbations thereof) the pairwise testing heuristic is able to more accurately recover the underlying graph. We show that the algorithm is scalable to graphs with thousands of nodes, and that, as long as structural assumptions are met, exhibits similar high-dimensional scaling properties as the LASSO. That is, performance degrades slowly while the system size increases and the number of available samples is held fixed. Finally, a proof-of-concept application example shows, by attempting to classify alcoholic individuals using only Granger causality graphs inferred from EEG measurements, that the inferred Granger causality graph topology carries identifiable features.

Publisher

Cambridge University Press (CUP)

Subject

Sociology and Political Science,Communication,Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3