Abstract
AbstractAtmospheric escape is a fundamental phenomenon shaping the structure and evolution of planetary atmospheres. Physics of planetary winds range from global processes such as tidal interactions with the host star, through large-scale hydrodynamic outflow, to essentially microphysical kinetic effects, including Jeans-like escape and the interaction of planetary atmospheres with stellar winds and the own magnetic fields of planets. Each of these processes is expected to be most relevant for planets of different properties and at different stages in planetary and stellar evolution. Thus, it is expected that the hydrodynamic outflow guides the evolution of hydrogen-dominated atmospheres of planets having low masses (below that of Neptune) and/or close-in orbits, while the kinetic effects are most important for the long-term evolution of planets with secondary atmospheres, similar to the inner planets in the Solar System. Finally, each of these processes is affected by the interaction with stellar winds.
Publisher
Cambridge University Press (CUP)
Subject
Astronomy and Astrophysics,Space and Planetary Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献