A novel relationship between O-antigen variation, matrix formation, and invasiveness ofSalmonella enteritidis

Author:

Guard-Petter J.,Keller L. H.,Rahman M. Mahbubur,Carlson R. W.,Silvers S.

Abstract

SummarySalmonella entericaEnteritidis in chickens serves as a reservoir for salmonellosis in humans and the structure of its lipopolysaccharide (LPS) has been used to assess invasiveness. Culture from chick spleens generated colonies with an unusual wrinkled morphology, and it is designated the lacy phenotype. To characterize the nature of the morphological change, three isogenic variants were compared. Only the lacy phenotype produced a temperature-dependent cell surface matrix composed of several proteins in association with LPS high molecular weight O-antigen.Flagellin and a 35 kDa protein were identified as specific proteinaceous components of matrix. Both proteins cross-reacted with a monoclonal antibody previously determined to specifically detect the g-epitope of the Enteritidis monophasic flagella (H-antigen). These results suggest that O-antigen in association with protein contributes to cross-reactivity between molecules. The lacy phenotype was more organ invasive in 5-day-old chicks than isogenic variants producing low molecular weight O-antigen. However, it was no more efficient at contaminating eggs after oral inoculation of hens than a variant that completely lacked O-antigen, thus the lacy phenotype is classified as an intermediately invasive organism. The distinctive colonial phenotype of SE6-E21lacywas used to investigate environmental factors that decreased O/C ratios and contributed to attenuation. In so doing, it was found that growth in complement at 46°C caused matrix producing cells to hyperflagellate and migrate across agar surfaces. These results suggest that the structure of O-antigen might influence the secretion and/or the function of Enteritidis cell-surface proteins. The data also reveal a greater heterogeneity than has been assumed in the phenotype, and possibly the infectious behaviour, of Enteritidis.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3