Abstract
Abstract
Most of the existing prediction models for COVID-19 lack validation, are inadequately reported or are at high risk of bias, a reason which has led to discourage their use. Few existing models have the potential to be extensively used by healthcare providers in low-resource settings since many require laboratory and imaging predictors. Therefore, we sought to develop and validate a multivariable prediction model of death in Mexican patients with COVID-19, by using demographic and patient history predictors. We conducted a national retrospective cohort study in two different sets of patients from the Mexican COVID-19 Epidemiologic Surveillance Study. Patients with a positive reverse transcription-polymerase chain reaction for SARS-CoV-2 and complete unduplicated data were eligible. In total, 83 779 patients were included to develop the scoring system through a multivariable Cox regression model; 100 000, to validate the model. Eight predictors (age, sex, diabetes, chronic obstructive pulmonary disease, immunosuppression, hypertension, obesity and chronic kidney disease) were included in the scoring system called PH-Covid19 (range of values: −2 to 25 points). The predictive model has a discrimination of death of 0.8 (95% confidence interval (CI) 0.796–0.804). The PH-Covid19 scoring system was developed and validated in Mexican patients to aid clinicians to stratify patients with COVID-19 at risk of fatal outcomes, allowing for better and efficient use of resources.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Epidemiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献