Abstract
AbstractInfluenza results in approximately 3–5 million annual cases of severe illness and 250 000–500 000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to help hospitals to perform dynamical assignments of beds to influenza patients for the annually varied influenza season, and aid pharmaceutical companies to formulate a flexible plan of manufacturing vaccine for the yearly different influenza vaccine. In this study, we utilised four different multi-step prediction algorithms in the long short-term memory (LSTM). The result showed that implementing multiple single-output prediction in a six-layer LSTM structure achieved the best accuracy. The mean absolute percentage errors from two- to 13-step-ahead prediction for the US influenza-like illness rates were all <15%, averagely 12.930%. To the best of our knowledge, it is the first time that LSTM has been applied and refined to perform multi-step-ahead prediction for influenza outbreaks. Hopefully, this modelling methodology can be applied in other countries and therefore help prevent and control influenza worldwide.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Epidemiology
Reference28 articles.
1. Learning to Forget: Continual Prediction with LSTM
2. Antigenic variants of influenza viruses: Marked differences in the frequencies of variants selected with different monoclonal antibodies
3. Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants
4. Identification and control of dynamical systems using neural networks;Narendra;Institute of Electrical and Electronics Engineers Transactions on Neural Networks,1990
5. Brownlee J (2017) Four strategies for multi-step time series forecasting. Available at https://machinelearningmastery.com/multi-step-time-series-forecasting/ (Accessed 29 October 2017).
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献