Zero-inflated negative binomial mixed model: an application to two microbial organisms important in oesophagitis

Author:

FANG R.,WAGNER B. D.,HARRIS J. K.,FILLON S. A.

Abstract

SUMMARYAltered microbial communities are thought to play an important role in eosinophilic oesophagitis, an allergic inflammatory condition of the oesophagus. Identification of the majority of organisms present in human-associated microbial communities is feasible with the advent of high throughput sequencing technology. However, these data consist of non-negative, highly skewed sequence counts with a large proportion of zeros. In addition, hierarchical study designs are often performed with repeated measurements or multiple samples collected from the same subject, thus requiring approaches to account for within-subject variation, yet only a small number of microbiota studies have applied hierarchical regression models. In this paper, we describe and illustrate the use of a hierarchical regression-based approach to evaluate multiple factors for a small number of organisms individually. More specifically, the zero-inflated negative binomial mixed model with random effects in both the count and zero-inflated parts is applied to evaluate associations with disease state while adjusting for potential confounders for two organisms of interest from a study of human microbiota sequence data in oesophagitis.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

Reference22 articles.

1. Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling

2. Greene W . Accounting for excess zeros and sample selection in Poisson and negative binomial regression models. Working paper. Department of Economics, Stern School of Business, New York University, 1994.

3. The NIH Human Microbiome Project

4. Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3