Learning to count: A deep learning framework for graphlet count estimation

Author:

Liu XutongORCID,Chen Yu-Zhen Janice,Lui John C. S.,Avrachenkov Konstantin

Abstract

AbstractGraphlet counting is a widely explored problem in network analysis and has been successfully applied to a variety of applications in many domains, most notatbly bioinformatics, social science, and infrastructure network studies. Efficiently computing graphlet counts remains challenging due to the combinatorial explosion, where a naive enumeration algorithm needs O(Nk) time for k-node graphlets in a network of size N. Recently, many works introduced carefully designed combinatorial and sampling methods with encouraging results. However, the existing methods ignore the fact that graphlet counts and the graph structural information are correlated. They always consider a graph as a new input and repeat the tedious counting procedure on a regular basis even if it is similar or exactly isomorphic to previously studied graphs. This provides an opportunity to speed up the graphlet count estimation procedure by exploiting this correlation via learning methods. In this paper, we raise a novel graphlet count learning (GCL) problem: given a set of historical graphs with known graphlet counts, how to learn to estimate/predict graphlet count for unseen graphs coming from the same (or similar) underlying distribution. We develop a deep learning framework which contains two convolutional neural network models and a series of data preprocessing techniques to solve the GCL problem. Extensive experiments are conducted on three types of synthetic random graphs and three types of real-world graphs for all 3-, 4-, and 5-node graphlets to demonstrate the accuracy, efficiency, and generalizability of our framework. Compared with state-of-the-art exact/sampling methods, our framework shows great potential, which can offer up to two orders of magnitude speedup on synthetic graphs and achieve on par speed on real-world graphs with competitive accuracy.

Publisher

Cambridge University Press (CUP)

Subject

Sociology and Political Science,Communication,Social Psychology

Reference62 articles.

1. Graph evolution

2. Color-coding

3. Butler, S. K. (2008). Eigenvalues and structures of graphs. Ph.D. thesis, UC San Diego.

4. Estimation of graphlet counts in massive networks;Rossi;IEEE Transactions on Neural Networks and Learning Systems,2018

5. Mining Graphlet Counts in Online Social Networks

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3