Metabolic and behavioural effects of hermit crab shell removal techniques: Is heating less invasive than cracking?

Author:

Burciaga Luis MORCID,Alcaraz GuillerminaORCID

Abstract

AbstractHermit crabs (Paguroidea; Latreille 1802) offer great opportunities to study animal behaviour and physiology. However, the animals’ size and sex cannot be determined when they are inside their shell; information crucial to many experimental designs. Here, we tested the effects of the two most common procedures used to make crabs leave their shells: heating the shell apex and cracking the shell with a bench press. We compared the effects of each of the two procedures on the metabolic rate, hiding time, and duration of the recovery time relative to unmanipulated hermit crabs. The hermit crabs forced to abandon their shell through heating increased their respiratory rate shortly after the manipulation (1 h) and recovered their metabolic rate in less than 24 h, as occurs in individuals suddenly exposed to high temperatures in the upper-intertidal zone. Hermit crabs removed from their shells via cracking spent more time hiding in their new shells; this effect was evident immediately after the manipulation and lasted more than 24 h, similar to responses exhibited after a life-threatening predator attack. Both methods are expected to be stressful, harmful, or fear-inducing; however, the temperature required to force the crabs to abandon the shell is below the critical thermal maxima of most inhabitants of tropical tide pools. The wide thermal windows of intertidal crustaceans and the shorter duration of consequences of shell heating compared to cracking suggest heating to be a less harmful procedure for removing tropical hermit crabs from their shells.

Publisher

Cambridge University Press (CUP)

Subject

General Veterinary,General Biochemistry, Genetics and Molecular Biology,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3