Fusion Pore: An Evolutionary Invention of Nucleated Cells

Author:

Vardjan N.,Stenovec M.,Jorgačevski J.,Kreft M.,Zorec R.

Abstract

This article outlines the lecture presented by Robert Zorec at the Academia Europea meeting in Liverpool on 19 September 2008, four decades after the Sherrington Lecture of Bernard Katz who, together with his colleagues, developed a number of paradigms addressing vesicles in chemical synapses. Vesicles are subcellular organelles that evolved in eukaryotic cells 1000 to 2000 million years ago. They store signalling molecules such as chemical messengers, which are essential for the function of neurons and endocrine cells in supporting the communication between tissues and organs in the human body. Upon a stimulus, the vesicle-stored signalling molecules (neurotransmitters or hormones) are released from cells. This event involves exocytosis, a fundamental biological process, consisting of the merger of the vesicle membrane with the plasma membrane. The two fusing membranes lead to the formation of an aqueous channel – the fusion pore – through which signalling molecules exit into the extracellular space or blood stream. The work of Bernard Katz and colleagues considered that vesicle cargo discharge initially requires the delivery of vesicles to the plasma membrane, where vesicles dock and get primed for fusion with the plasma membrane, and that stimulation initiates the formation of the transient fusion pore through which cargo molecules leave the vesicle lumen in an all-or-none-fashion. However, recent studies indicate that this may not be so simple. Here we highlight the novel findings which indicate that fusion pores are subject to regulations, which affect the release competence of a single vesicle. At least in pituitary lactotrophs, which are the subject of research in our laboratories, single vesicle release of peptide signalling molecules involves modulation of fusion pore diameter and fusion pore kinetics.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3