Genetic diversity analyses of Brassica napus accessions using SRAP molecular markers

Author:

Ahmad Riaz,Farhatullah ,Quiros Carlos F.,Rahman Hidayatur,Swati Zahoor Ahmad

Abstract

Knowledge about genetic diversity among Brassica napus cultivars developed for many growing regions and their possible use as potential inbred lines for hybrid seed production is limited. We studied the genetic diversity and relationships among B. napus accessions using Sequence Related Amplified Polymorphism (SRAP) markers, which preferentially amplify open reading frames. A total of 60 spring-type B. napus accessions were screened using 20 SRAP primers, which revealed 162 polymorphic fragments with an average of eight markers per primer combination. Genetic similarity estimates ranged from 40 to 100, which indicated sufficient diversity among the accessions. The majority of the accessions were uniquely identified by the markers with the exception of near-isogenic inbred lines. Cluster analysis displayed five major groups. The first major cluster comprised 23 accessions mostly of Australian origin, whereas the second cluster included 13 accessions mostly of Canadian origin. The accessions in the first and second clusters were identified as maintainers of cytoplasmic male sterility. The two restorer lines R-111 and R-101 along with their corresponding backcross progeny constituted the third cluster. Scandinavian cultivars made the fourth separate cluster. One cultivar Salam and its respective inbred line were the most divergent lines. Variations in the number of markers between open-pollinated cultivars and their respective selfed inbred lines were also observed. The clustering pattern mostly supported their respective pedigree and characteristic traits. Genetic diversity in genetically distinct groups in the tested maintainer and restorer lines can be exploited for hybrid development in B. napus.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Genetics,Agronomy and Crop Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3