Cloning and characterization of γ-glutamylcysteine synthetase in the salt- and oxidative stress-tolerant wild tomato species Solanum pennellii under abiotic stresses

Author:

Barriah Waseim,Najami Naim,Zaid Hilal

Abstract

AbstractThe wild species of tomato Solanum pennellii (Lpa) is more tolerant to salt-induced oxidative stress than the cultivated species Solanum lycopersicum (Lem), due to the increase of several antioxidative metabolites and enzymes in this species under stress. The increase of reduced glutathione (GSH), one of these metabolites, in NaCl-treated Lpa, is due at least partly to the elevation of γ-glutamylcysteine synthetase (γ-ECS). Introgression line IL 8–3, which was found to include the Lpa orthologue of the γ-ECS gene (Lpa γ-ECS) in Lem's genetic background, was used to assign this gene to chromosome 8 and to assess its relative contribution to the effective antioxidative response of Lpa to stress. The growth of IL 8–3 and Lem plants responded similarly to NaCl and cadmium (Cd) stresses. In both genotypes, GSH and H2O2 levels responded also similarly to NaCl stress. NaCl and Cd stresses affected similarly the transcription of the γ-ECS gene in leaves of both IL 8–3 and Lpa plants. The effect of buthionine sulfoximine (BSO), a competitive inhibitor of the γ-ECS enzyme, on γ-ECS transcription was also similar in these two genotypes. Taken together, these results suggest that γ-ECS orthologues differ mainly in the regulation of their transcription and not at the post-transcriptional or translational levels. The mutation(s) led to these differences in the response of the two orthologues to the salinity and heavy metal stresses are expected to occur in a cis-regulatory element(s) located relatively close to γ-ECS.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Genetics,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3