Author:
Barriah Waseim,Najami Naim,Zaid Hilal
Abstract
AbstractThe wild species of tomato Solanum pennellii (Lpa) is more tolerant to salt-induced oxidative stress than the cultivated species Solanum lycopersicum (Lem), due to the increase of several antioxidative metabolites and enzymes in this species under stress. The increase of reduced glutathione (GSH), one of these metabolites, in NaCl-treated Lpa, is due at least partly to the elevation of γ-glutamylcysteine synthetase (γ-ECS). Introgression line IL 8–3, which was found to include the Lpa orthologue of the γ-ECS gene (Lpa γ-ECS) in Lem's genetic background, was used to assign this gene to chromosome 8 and to assess its relative contribution to the effective antioxidative response of Lpa to stress. The growth of IL 8–3 and Lem plants responded similarly to NaCl and cadmium (Cd) stresses. In both genotypes, GSH and H2O2 levels responded also similarly to NaCl stress. NaCl and Cd stresses affected similarly the transcription of the γ-ECS gene in leaves of both IL 8–3 and Lpa plants. The effect of buthionine sulfoximine (BSO), a competitive inhibitor of the γ-ECS enzyme, on γ-ECS transcription was also similar in these two genotypes. Taken together, these results suggest that γ-ECS orthologues differ mainly in the regulation of their transcription and not at the post-transcriptional or translational levels. The mutation(s) led to these differences in the response of the two orthologues to the salinity and heavy metal stresses are expected to occur in a cis-regulatory element(s) located relatively close to γ-ECS.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Genetics,Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献