Abstract
Abstract
Let K be a number field, let A be a finite-dimensional K-algebra, let
$\operatorname {\mathrm {J}}(A)$
denote the Jacobson radical of A and let
$\Lambda $
be an
$\mathcal {O}_{K}$
-order in A. Suppose that each simple component of the semisimple K-algebra
$A/{\operatorname {\mathrm {J}}(A)}$
is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two
$\Lambda $
-lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism
$X \rightarrow Y$
. This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices
$A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$
, determine whether A and B are similar over
$\mathcal {O}_{K}$
, and if so, return a matrix
$C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$
such that
$B= CAC^{-1}$
. We give explicit examples that show that the implementation of the latter algorithm for
$\mathcal {O}_{K}=\mathbb {Z}$
vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献