Abstract
Abstract
We prove the abelian/nonabelian correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine–Kim–Sabbah, Brown, and Oh. From this, we deduce how genus-zero Gromov–Witten invariants change when a smooth projective variety X is blown up in a complete intersection defined by convex line bundles. In the case where the blow-up is Fano, our result gives closed-form expressions for certain genus-zero invariants of the blow-up in terms of invariants of X. We also give a reformulation of the abelian/nonabelian Correspondence in terms of Givental’s formalism, which may be of independent interest.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Logarithmic quasimaps;Advances in Mathematics;2024-02