Abstract
Abstract
We use the method of Bruinier–Raum to show that symmetric formal Fourier–Jacobi series, in the cases of norm-Euclidean imaginary quadratic fields, are Hermitian modular forms. Consequently, combining a theorem of Yifeng Liu, we deduce Kudla’s conjecture on the modularity of generating series of special cycles of arbitrary codimension for unitary Shimura varieties defined in these cases.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Reference58 articles.
1. Automorphic forms with singularities on Grassmannians
2. [29] Kudla, S. S. , “Remarks on generating series for special cycles.” arXiv:1908.08390v1, 2019.
3. The modularity of special cycles on orthogonal shimura varieties over totally real fields under the beilinson–bloch conjecture;Maeda;Canadian Mathematical Bulletin,2020
4. �ber eine Spezialschar von Modulformen zweiten Grades (II)
5. Extensions centrales de groupes algébriques simplement connexes et cohomologie galoisienne
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献