Abstract
AbstractGiven a negatively graded Calabi-Yau algebra, we regard it as a DG algebra with vanishing differentials and study its cluster category. We show that this DG algebra is sign-twisted Calabi-Yau and realise its cluster category as a triangulated hull of an orbit category of a derived category and as the singularity category of a finite-dimensional Iwanaga-Gorenstein algebra. Along the way, we give two results that stand on their own. First, we show that the derived category of coherent sheaves over a Calabi-Yau algebra has a natural cluster tilting subcategory whose dimension is determined by the Calabi-Yau dimension and thea-invariant of the algebra. Second, we prove that two DG orbit categories obtained from a DG endofunctor and its homotopy inverse are quasi-equivalent. As an application, we show that the higher cluster category of a higher representation infinite algebra is triangle equivalent to the singularity category of an Iwanaga-Gorenstein algebra, which is explicitly described. Also, we demonstrate that our results generalise the context of Keller–Murfet–Van den Bergh on the derived orbit category involving a square root of the AR translation.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis