Requirements and limits of anatomy-based predictions of locomotion in terrestrial arthropods with emphasis on arachnids

Author:

Weihmann Tom,Goetzke Hanns Hagen,Günther Michael

Abstract

AbstractModern computer-aided techniques foster the availability and quality of 3D visualization and reconstruction of extinct and extant species. Moreover, animated sequences of locomotion and other movements find their way into motion pictures and documentary films, but also gain attraction in science. While movement analysis is well advanced in vertebrates, particularly in mammals and birds, analyses in arthropods, with their much higher variability regarding general anatomy and size, are still in their infancies and restricted to a few laboratory species. These restrictions and deficient understanding of terrestrial arthropod locomotion in general impedes sensible reconstruction of movements in those species that are not directly observable (e.g., extinct and cryptic species). Since shortcomings like over-simplified approaches to simulate arthropod locomotion became obvious recently, in this review we provide insight into physical, morphological, physiological, behavioral, and ecological constraints, which are essential for sensible reconstructions of terrestrial arthropod locomotion. Such concerted consideration along with sensible evaluations of stability and efficiency requirements can pave the way to realistic assessment of leg coordination and body dynamics.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology

Reference107 articles.

1. Stepping patterns in tarantula spiders;Wilson;Journal of Experimental Biology,1967

2. Stepping patterns in ants—influence of load;Zollikofer;Journal of Experimental Biology,1994

3. Blood pressure in the tarantula,Dugesiella hentzi

4. Jumping kinematics in the wandering spider Cupiennius salei

5. Hydraulic leg extension is not necessarily the main drive in large spiders

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3