Winter legume cover-crop root decomposition and N release dynamics under disking and roller-crimping termination approaches

Author:

Jani Arun D.,Grossman Julie,Smyth Thomas J.,Hu Shuijin

Abstract

AbstractSeveral approaches can be used to terminate legume cover crops in the spring prior to planting summer crops, but the effect that these methods have on decomposition and nitrogen (N) release dynamics of legume cover-crop roots is poorly understood. The main objectives of this study were to: (i) quantify decomposition and N release of roots from pea (Pisum sativum), clover (Trifolium incarnatum) and vetch (Vicia villosa Roth); (ii) determine if roots decompose and release N faster when cover crops are terminated by disking compared with roller-crimping; and (iii) determine if roots decompose and release N faster under higher soil inorganic N levels. Two field experiments were conducted in Goldsboro and Kinston, North Carolina in the summer of 2012. Cover crops at these sites were terminated in spring by disking or roller-crimping and planted to unirrigated corn. Air-dried roots placed in litterbags were buried in their corresponding cover-crop plots and in plots where cover crops had not been grown that had either synthetic N fertilizer added at burial or had no fertilizer addition. Root litterbags were collected over 16 weeks at both sites. Cover-crop plots terminated by disking had up to 117 and 49% higher soil inorganic N than roller-crimped plots in Goldsboro and Kinston, respectively. However, roots did not appear to contribute significantly to these increases, as measured root decomposition and N release was not affected by termination approach at either site. Roots decomposed rapidly at both sites, losing up to 65% of their original biomass within 4 weeks after burial. Root N release was also rapid at both sites, with vetch generally releasing N fastest and clover slowest. It was estimated that cover-crop roots supplied 47–62 and 19–33 kg N ha−1 during the corn cycle in Goldsboro and Kinston, respectively. Our results indicate that under the warm, humid summer conditions of the Southeastern USA, legume cover-crop roots decompose and release N rapidly.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3