Clover green manure productivity and weed suppression in an organic grain rotation

Author:

Koehler-Cole Katja,Brandle James R.,Francis Charles A.,Shapiro Charles A.,Blankenship Erin E.,Baenziger P. Stephen

Abstract

AbstractGreen manure crops must produce high biomass to supply biological N, increase organic matter and control weeds. The objectives of our study were to assess above-ground biomass productivity and weed suppression of clover (Trifolium spp.) green manures in an organic soybean [Glycine max (L.) Merr.]-winter wheat (Triticum aestivum L.)-corn (Zea mays L.) rotation in eastern Nebraska in three cycles (2011–12, 2012–13, 2013–14). Treatments were green manure species [red clover (T. pratense L.) and white clover (T. repens L.)] undersown into winter wheat in March and green manure mowing regime (one late summer mowing or no mowing). We measured wheat productivity and grain protein at wheat harvest, and clover and weed above-ground biomass as dry matter (DM) at wheat harvest, 35 days after wheat harvest, in October and in April before clover termination. Winter wheat grain yields and grain protein were not affected by undersown clovers. DM was higher for red than for white clover at most sampling times. Red clover produced between 0.4 and 5.5 Mg ha−1 in the fall and 0.4–5.2 Mg ha−1 in the spring. White clover produced between 0.1 and 2.5 Mg ha−1 in the fall and 0.2–3.1 Mg ha−1 in the spring. Weed DM was lower under red clover than under white clover at most sampling times. In the spring, weed DM ranged from 0.0 to 0.6 Mg ha−1 under red clover and from 0.0 to 3.1 Mg ha−1 under white clover. Mowing did not consistently affect clover or weed DM. For organic growers in eastern Nebraska, red clover undersown into winter wheat can be a productive green manure with good weed suppression potential.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3