Stakeholder-driven adaptive research (SDAR): better research products

Author:

DeLong Alia N.ORCID,Swisher Marilyn E.ORCID,Chase Carlene A.,Zhao Xin,Liburd Oscar E.ORCID,Gao ZhifengORCID,Bolques Alejandro,Gu Sanjun

Abstract

AbstractRapid changes in economic, environmental and social conditions generate both problems and opportunities in agriculture. The cycle from problem identification through discovery of potential solutions is lengthy. The objective of this study was to use collaborative methods to speed the cycle of discovery in sustainable organic strawberry (Fragaria × ananassa) production systems in the southeastern USA. This method, stakeholder-driven adaptive research (SDAR), combines farmers' experiential knowledge with scientists' experimental knowledge to develop rigorous research design collectively. Farmers evaluated our biological research and co-designed research experiments with scientists. Farmers and other stakeholders (1) evaluated on-station experiments individually and then made recommendations as a group, (2) served as advisory council members to direct our goals and objectives, and (3) conducted farmer field trials where they implemented aspects of our on-station experiments under their management regimes. The results eliminated potential solutions that were not feasible, ineffective or too costly for farmers to adopt. Key results included eliminating treatments using high tunnel systems altogether on one field trial on a University of Florida (UF) research facility, adding a leguminous cover crop mix treatment, adding companion planting, and eliminating strawberry cultivars Strawberry Festival and Florida Beauty from our research trials. Our proposed methodology allows farmers and other stakeholders to inform the biological research from design through dissemination to reduce the time needed to create research products in an era of rapid bio-physical, social and economic change. Accelerating the discovery cycle could significantly improve our ability to identify and address threats to the USA and global food and fiber production system.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

Reference69 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3