Author:
Landgraf S.,Susenbeth A.,Knap P.W.,Looft H.,Plastow G.S.,Kalm E.,Roehe R.
Abstract
A serial slaughter trial was carried out to examine the developmental change of physical and chemical body composition in pigs highly selected for lean content. A total of 48 pigs (17 females and 31 castrated males) were serially slaughtered and chemically analysed. Eight pigs were slaughtered at 20, 30, 60, 90, 120 and 140 kg live weight, (LW) respectively. The carcass was chilled and the left carcass side was dissected into the primal carcass cuts ham, loin, shoulder, belly and neck. Each primal carcass cut was further dissected into lean tissue, bones and rind. Additionally, the physical and chemical body composition was obtained for the total empty body as well as for the three fractions soft tissue, bones and viscera. Viscera included the organs, blood, empty intestinal tract and leaf fat. The relationship between physical or chemical body composition and empty body weight (EBWT) at slaughter was assessed using allometric equations (log10y=log10a+blog10EBWT). Dressing percentage increased from 69·4 to 85·2% at 20 to 120 kg and then decreased to 83·1% at 140 kg LW, whereas percentage of soft tissue, bones and viscera changed from 23·5 to 33·0%, 10·1 to 6·3% and 14·7 to 10·3%, respectively, during the entire growth period. Substantial changes in proportional weights of carcass cuts on the left carcass side were obtained for loin (10·5 to 17·5%) and belly (11·3 to 13·8%) during growth from 20 to 140 kg. Soft tissue fraction showed an allometric coefficient above 1 (b=1·14) reflecting higher growth rate in relation to the total empty body. The coefficients for the fractions bones and viscera were substantially below 1 with b=0·77 and 0·79, respectively, indicating substantial lower growth relative to growth of the total empty body. Lean tissue allometric growth rate of different primal cuts ranged fromb=1·02 (neck) to 1·28 (belly), whereas rates of components associated with fat tissue growth rate ranged fromb=0·62 (rind of belly) to 1·79 (backfat). For organs, allometric growth rate ranged fromb=0·61 (liver) to 0·90 (spleen). For the entire empty body, allometric accretion rate was 1·01, 1·75, 1·02 and 0·85 for protein, lipid, ash and water, respectively. Extreme increase in lipid deposition was obtained during growth from 120 to 140 kg growth. This was strongly associated with an increase in backfat and leaf fat in this period. Interestingly, breeds selected for high leanness such as Piétrain sired progeny showed an extreme increase in lipid accretion at a range of LW from 120 to 140 kg, which indicates that selection has only postponed the lipid deposition to an higher weight compared with the normally used final weight of 100 kg on the performance test. The estimates obtained for allometric growth rates of primal carcass cuts, body tissue and chemical body composition can be used to predict changes in weight of carcass cuts, determine selection goals concerning lean tissue growth, food intake capacity, etc. and generally as input parameters for pig growth models that can be used to improve the efficiency of the entire pig production system for pigs highly selected for lean content.
Publisher
Cambridge University Press (CUP)
Subject
Animal Science and Zoology
Reference38 articles.
1. Doedt H. 1997. Qualitative und wirtschaftliche Aspekte der Schweineproduktion unter Berücksichtigung von Handelswert und Gesundheitsstatus. Doctoral thesis, University Kiel, Germany
2. Developmental studies of body composition;Seebeck;Animal Breeding Abstracts,1968
3. Identification of a Mutation in Porcine Ryanodine Receptor Associated with Malignant Hyperthermia
4. Growth and development of pigs: a reanalysis of the effects of nutrition on body composition
5. Evaluation of alternative techniques to determine pork carcass value