A Study of Parallel Efficiency of Modified Direct Algorithm Applied to Thermohydrodynamic Lubrication

Author:

Wang N.,Tsai C.-M.,Cha K.-C.

Abstract

AbstractThis study examines the parallel computing as a means to minimize the execution time in the optimization applied to thermohydrodynamic (THD) lubrication. The objective of the optimization is to maximize the load capacity of a slider bearing with two design variables. A global optimization method, DIviding RECTangle (DIRECT) algorithm, is used. The first approach was to apply the parallel computing within the THD model in a shared-memory processing (SMP) environment to examine the parallel efficiency of fine-grain computation. Next, a distributed parallel computing in the search level was conducted by use of the standard DIRECT algorithm. Then, the algorithm is modified to provide a version suitable for effective parallel computing. In the latter coarse-grain computation the speedups obtained by the DIRECT algorithms are compared with some previous studies using other parallel optimization methods. In the fine-grain computation of the SMP machine, the communication and overhead time costs prohibit high speedup in the cases of four or more simultaneous threads. It is found that the standard DIRECT algorithm is an efficient sequential but less parallel-computing-friendly method. When the modified algorithm is used in the slider bearing optimization, a parallel efficiency of 96.3% is obtained in the 16-computing-node cluster. This study presents the modified DIRECT algorithm, an efficient parallel search method, for general engineering optimization problems.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3