Analysis of a Pot-Like Ultrasonic Sensor with an Anisotropic Beam Pattern

Author:

Cheng C.-C.,Lin C.-Y.,Ho J.-H.,Chen C.-S.,Shieh J.,Wu W.-J.,Wu K.-C.,Lee C.-K.

Abstract

AbstractWe investigated the design parameters of a compact pot-like ultrasonic sensor which possesses a highly anisotropic beam pattern. As the sensor size is small due to its application constraint, the parameters are thus highly coupled to one another. We analyzed the respective effects of the parameters in the case where there is a vertical beam width reduction. The parameters investigated include resonant frequency, vibrating plate width-expanded angle, and ratio of thickness discontinuity of the vibrating plate. Numerical models developed by combining finite-element analysis and spatial Fourier transforms were adopted to predict the far-field radiating beam pattern of the various design configurations. The displacement distribution of the vibrating plate was measured using a microscopic laser Doppler vibrometer and the far-field pressure beam patterns were measured using a standard microphone in a semianechoic environment. The three configurations we used to validate the simulation model resulted in an H-V ratio of 2.67, 2.68 and 3.13, respectively which all agreed well with the numerical calculations. We found that by increasing the operating resonant frequency from 40kHz to 58kHz, the vertical far-field beam width of an ultrasonic sensor can be reduced by 31.62%. We found that the vertical beam width can be significantly reduced when the ratio of the thickness discontinuity of the vibrating plate decreases from 1 to 0.4 and is incorporated with its optimal width-expanded angle of the vibrating plate. It appears that an ultrasonic sensor with this type of anisotropic beam pattern can be ideally adopted for today's automotive applications.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3