Large Deformation Analysis for Soft Foams Based on Hyperelasticity

Author:

Silber G.,Alizadeh M.,Salimi M.

Abstract

AbstractIn Elastomeric foam materials find wide applications for their excellent energy absorption properties. The mechanical property of elastomeric foams is highly nonlinear and it is essential to implement mathematical constitutive models capable of accurate representation of the stress-strain responses of foams. A constitutive modeling method of defining hyperfoam strain energy function by a Simplex Strategy is presented in this work. This study will demonstrate that a strain energy function of finite hyperelasticity for compressible media is applicable to describe the elastic properties of open cell soft foams. This strain energy function is implemented in the FE-tool ABAQUS and proposed for high compressible soft foams. To determine this constitutive equation, experimental data from a uniaxial compression test are used. As the parameters in the constitutive equation are linked in a non-linear way, non-linear optimization routines are adopted. Moreover due to the in homogeneities of the deformation field of the uniaxial compression test, the quality function of the optimization routine has to be determined by an FE-tool. The appropriateness of the strain energy function is tested by a complex loading test.By using the optimized parameters the FE-simulation of this test is in good accordance with the experimental data.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3