Reconstructing Saharan dust transport to the Eastern Mediterranean Sea during the last 180 ka using endmember modelling of grain size data

Author:

Beuscher SarahORCID,Ehrmann Werner,Krüger Stefan,Schmiedl Gerhard

Abstract

AbstractEndmember modelling on the terrigenous silt fraction of nine marine sediment cores spanning up to 180,000 years reveals the influx of North African dust into the Eastern Mediterranean Sea. The dust grain size modes decrease with transport distance, from >50 µm off the African coast to ca. 30 µm in the Aegean Sea. The dust signal is strongly influenced by hydrological changes in northern Africa. Changes from arid to humid periods are documented in the grain size data of all cores. The climatic signal gets weaker with growing distance from the source and close to large fluvial sediment sources such as the Nile. Frequency and wavelet analyses show a strong orbital precession signal that is known to trigger the migration of the monsoonal rain belt in northern Africa. The influence of climate changes on suborbital time scales on dust influx is less distinct, but Dansgaard-Oeschger interstadials and Heinrich-like events are documented in some cores. In the sediment core closest to the source, three endmembers represent one or more dust sources in northern Africa. With growing distance from the source, the three modes cannot be separated anymore and appear as one multimodal dust endmember.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3