Author:
Ayanbayev Birzhan,Katzourakis Nikos
Abstract
AbstractLet n, $N \in {\open N}$ with $\Omega \subseteq {\open R}^n$ open. Given ${\rm H} \in C^2(\Omega \times {\open R}^N \times {\open R}^{Nn})$, we consider the functional
1$${\rm E}_\infty (u,{\rm {\cal O}})\, : = \, \mathop {{\rm ess}\,\sup}\limits_{\rm {\cal O}} {\rm H}(\cdot, u,{\rm D}u),\quad u\in W_{{\rm loc}}^{1,\infty} (\Omega, {\open R}^N),\quad {\rm {\cal O}}{\Subset}\Omega.$$
The associated PDE system which plays the role of Euler–Lagrange equations in $L^\infty $ is
2$$\left\{\matrix{{\rm H}_{P}(\cdot, u, {\rm D}u)\, {\rm D}\left({\rm H}(\cdot, u, {\rm D} u)\right) = \, 0, \hfill \cr {\rm H}(\cdot, u, {\rm D} u) \, [\![{\rm H}_{P}(\cdot, u, {\rm D} u)]\!]^\bot \left({\rm Div}\left({\rm H}_{P}(\cdot, u, {\rm D} u)\right)- {\rm H}_{\eta}(\cdot, u, {\rm D} u)\right) = 0,\hfill}\right.$$
where $[\![A]\!]^\bot := {\rm Proj}_{R(A)^\bot }$. Herein we establish that generalised solutions to (2) can be characterised as local minimisers of (1) for appropriate classes of affine variations of the energy. Generalised solutions to (2) are understood as ${\cal D}$-solutions, a general framework recently introduced by one of the authors.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献