Author:
Das B. Krishna,Gorai Sushil,Sarkar Jaydeb
Abstract
AbstractLet 𝔻n be the open unit polydisc in ℂn, $n \ges 1$, and let H2(𝔻n) be the Hardy space over 𝔻n. For $n\ges 3$, we show that if θ ∈ H∞(𝔻n) is an inner function, then the n-tuple of commuting operators $(C_{z_1}, \ldots , C_{z_n})$ on the Beurling type quotient module ${\cal Q}_{\theta }$ is not essentially normal, where
$${\rm {\cal Q}}_\theta = H^2({\rm {\open D}}^n)/\theta H^2({\rm {\open D}}^n)\quad {\rm and}\quad C_{z_j} = P_{{\rm {\cal Q}}_\theta }M_{z_j}\vert_{{\rm {\cal Q}}_\theta }\quad (j = 1, \ldots ,n).$$Rudin's quotient modules of H2(𝔻2) are also shown to be not essentially normal. We prove several results concerning boundary representations of C*-algebras corresponding to different classes of quotient modules including doubly commuting quotient modules and homogeneous quotient modules.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献