Abstract
AbstractIn this series of papers, we explore moments of derivatives of L-functions in function fields using classical analytic techniques such as character sums and approximate functional equation. The present paper is concerned with the study of mean values of derivatives of quadratic Dirichlet L-functions over function fields when the average is taken over monic and irreducible polynomials P in 𝔽q[T]. When the cardinality q of the ground field is fixed and the degree of P gets large, we obtain asymptotic formulas for the first moment of the first and the second derivative of this family of L-functions at the critical point. We also compute the full polynomial expansion in the asymptotic formulas for both mean values.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献