Author:
Csató Gyula,Kneuss Olivier,Rajendran Dhanya
Abstract
AbstractIn this paper, we study under what boundary conditions the inequality$${\rm \Vert }\nabla \omega {\rm \Vert }_{L^2(\Omega )}^2 \les C({\rm \Vert }{\rm curl}\omega {\rm \Vert }_{L^2(\Omega )}^2 + {\rm \Vert }{\rm div}\omega {\rm \Vert }_{L^2(\Omega )}^2 + {\rm \Vert }\omega {\rm \Vert }_{L^2(\Omega )}^2 )$$holds true. It is known that such an estimate holds if either the tangential or normal component ofωvanishes on the boundary ∂Ω. We show that the vanishing tangential component condition is a special case of a more general one. In two dimensions, we give an interpolation result between these two classical boundary conditions.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献