A Paperless and 3D Workflow for Documenting Excavations at Insula I.14, Pompeii, Italy

Author:

Badillo Alex ElvisORCID,Brennan Matthew R.,Estes Aaron M.,Aldrich Stephen P.ORCID,Emmerson Allison L. C.

Abstract

ABSTRACT In the summer of 2022, Tulane University, in collaboration with archaeologists from other institutions, began excavations at the site of Pompeii. The archaeological work was focused on Insula 14 of Region 1, located in the southeastern sector of the site. To overcome the challenges of recording a complex urban excavation, and of working with a collaborative team, we designed and implemented a unique workflow that combines paperless and 3D data-capture methods through the use of GIS technologies. The final product of our documentation workflow was a robust and easy-to-use online geodatabase where archaeologists can revisit, explore, visualize, and analyze each excavated context using virtual tools. We present our workflow for digitally documenting observational and spatial data in the field, and how we made these data available to project archaeologists during and after the field season. First, we describe the development of digital forms in ESRI's Survey123. Then, we explain our procedures for 3D documentation through SfM photogrammetric methods and discuss how we integrated the data and transformed it into an accessible format by using interactive dashboards and online 3D web scenes. Finally, we discuss the components of our workflow that are broadly applicable and that can easily be adapted to other projects.

Publisher

Cambridge University Press (CUP)

Reference32 articles.

1. Recording In Situ Human Remains in Three Dimensions

2. Digital Archaeological Fieldwork and the Jezreel Valley Regional Project, Israel;Adam;Near Eastern Archaeology,2014

3. SfM Photogrammetric Field Methods for Historic Burial Excavations: The Case of Bethel Cemetery

4. Mobilization as Mediation

5. Estes, Aaron . 2022. Multi-Temporal Monitoring of Petroglyphs Using SfM Photogrammetry. Master's thesis, Department of Earth and Environmental Systems, Indiana State University, Terre Haute. ProQuest (29261899).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3