Atypical Reinforcement Learning in Developmental Dyslexia

Author:

Massarwe Atheer Odah,Nissan Noyli,Gabay YafitORCID

Abstract

Abstract Objectives: According to the Procedural Deficit Hypothesis, abnormalities in corticostriatal pathways could account for the language-related deficits observed in developmental dyslexia. The same neural network has also been implicated in the ability to learn contingencies based on trial and error (i.e., reinforcement learning [RL]). On this basis, the present study tested the assumption that dyslexic individuals would be impaired in RL compared with neurotypicals in two different tasks. Methods: In a probabilistic selection task, participants were required to learn reinforcement contingencies based on probabilistic feedback. In an implicit transitive inference task, participants were also required to base their decisions on reinforcement histories, but feedback was deterministic and stimulus pairs were partially overlapping, such that participants were required to learn hierarchical relations. Results: Across tasks, results revealed that although the ability to learn from positive/negative feedback did not differ between the two groups, the learning of reinforcement contingencies was poorer in the dyslexia group compared with the neurotypicals group. Furthermore, in novel test pairs where previously learned information was presented in new combinations, dyslexic individuals performed similarly to neurotypicals. Conclusions: Taken together, these results suggest that learning of reinforcement contingencies occurs less robustly in individuals with developmental dyslexia. Inferences for the neuro-cognitive mechanisms of developmental dyslexia are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Clinical Neurology,Clinical Psychology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3