Validation of a Bayesian Diagnostic and Inferential Model for Evidence-Based Neuropsychological Practice

Author:

Goette William F.ORCID,Carlew Anne R.,Schaffert JeffORCID,Mokhtari Ben K.ORCID,Cullum C. MunroORCID

Abstract

AbstractObjective:Evidence-based diagnostic methods have clinical and research applications in neuropsychology. A flexible Bayesian model was developed to yield diagnostic posttest probabilities from a single person’s neuropsychological score profile by utilizing sample descriptive statistics of the test battery across diagnostic populations of interest.Methods:Three studies examined the model’s performance. One simulation examined estimation accuracy of true z-scores. A diagnostic accuracy simulation utilized descriptive statistics from two popular neuropsychological tests, the Wechsler Adult Intelligence Scale–IV (WAIS-IV) and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The final simulation examined posterior predictive accuracy of scores to those reported in the WAIS manual.Results:The model produced minimally biased z-score estimates (root mean square errors: .02–.18) with appropriate credible intervals (95% credible interval empirical coverage rates: .94–1.00). The model correctly classified 80.87% of simulated normal, mild cognitive impairment, and Alzheimer’s disease cases using a four subtest WAIS-IV and the RBANS compared to accuracies of 60.67–65.60% from alternative methods. The posterior predictions of raw scores closely aligned to percentile estimates published in the WAIS-IV manual.Conclusion:This model permits estimation of posttest probabilities for various combinations of neuropsychological tests across any number of clinical populations with the principal limitation being the accessibility of applicable reference samples. The model produced minimally biased estimates of true z-scores, high diagnostic classification rates, and accurate predictions of multiple reported percentiles while using only simple descriptive statistics from reference samples. Future nonsimulation research on clinical data is needed to fully explore the utility of such diagnostic prediction models.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Neurology (clinical),Clinical Psychology,General Neuroscience

Reference41 articles.

1. Bayesian Data Analysis

2. Comparing patients' predicted test scores from a regression equation with their obtained scores: A significance test and point estimate of abnormality with accompanying confidence limits.

3. Talts, S. , Betancourt, M. , Simpson, D. , Vehtari, A. , & Gelman, A. (2018). Validating Bayesian inference algorithms with simulation-based calibration. Arxiv.org. Retrieved from https://arxiv.org/pdf/1804.06788.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3