Dormancy break and germination requirements in acorns of two bottomlandQuercusspecies (Sect.Lobatae) of the eastern United States with references to ecology and phylogeny

Author:

Hawkins Tracy S.ORCID

Abstract

AbstractQuercusspecies are ecologically and economically important components of deciduous forests of the eastern United States. However, knowledge pertinent to a thorough understanding of acorn germination dynamics for these species is lacking. The objectives of this research were to determine dormancy break and germination requirements for acorns of two eastern United States bottomland species,Quercus nigraandQuercus phellos(SectionLobatae), and to present results within ecological and phylogenetic contexts. Three replicates of 50 acorns of each species received 0 (control), 6, 12 or 18 weeks of cold stratification, followed by incubation in alternating temperature regimes of 15/6, 20/10, 25/15 and 30/20°C. Eighteen weeks of cold stratification were not sufficient for dormancy break inQ. nigraacorns. Cumulative germination percentages at 4 weeks of incubation were ≥77%, but only in incubation temperatures of 25/15 and 30/20°C. Dormancy break inQ. phellosacorns was achieved with 18 weeks of cold stratification, and cumulative germination percentages were ≥87% at 4 weeks of incubation in all test temperature regimes. Gibberellic acid solutions were not an effective substitute for cold stratification in either species. Phylogenetically,Q. nigraandQ. phellosare closely related species and, ecologically, both grow in the same habitat. Acorns of both species possess deep physiological dormancy (PD), but dormancy break and germination requirements differ in acorns of these twoQuercusspecies.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Reference38 articles.

1. SAS Institute, Inc. (2007) The SAS System for Windows, Release V9.4. Cary, North Carolina, SAS Institute.

2. From a defective hardwood stand to multiple use opportunity;McGee;Journal of Forestry,1972

3. Seed Biology and Technology of Quercus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3