Palmitoylation mediates the proteolysis of seed storage proteins during the cooling process in hydrated lettuce seeds (Lactuca sativa)

Author:

Yu Ying,Han YingyingORCID,Ding Yujiao,Li Weijie,Jaganathan Ganesh K.,Liu Baolin

Abstract

AbstractPalmitoyl-protein thioesterase (PPT), involved in the fatty acid synthesis and the de-palmitoylation of protein, was induced under ecological cooling treatment in hydrated lettuce seeds. However, there was no significant difference in fatty acid levels between the control and the cooled samples. To further study the function of PPT, 2-bromopalmitic acid (2-Bp), an inhibitor of protein palmitoylation, was applied during the imbibition of hydrated lettuce seeds, which was followed by slow-cooling treatment (−3°C h−1). The application of 2-Bp (1 mM) significantly increased the survival rate of seeds from 6.70% (control imbibition) to 22.67% (2-Bp imbibition) after slow cooling to −20°C. Differential scanning calorimetry (DSC) analysis indicated that 2-Bp led to earlier onset of ice crystals in the endosperm than the control group. Two-dimensional electrophoresis (2D) confirmed that 2-Bp could promote the hydrolysis of seed globulins and the accumulation of globulin peptides with small molecular weights. High-efficiency hydrolysis of globulin induced by mercaptoethanol improved the freezing tolerance of hydrated lettuce seeds and led to the accumulation of small globulin peptides, which further proved the positive function of small globulin polypeptides in enhancing the freezing tolerance of hydrated lettuce seeds. DSC of small globulin peptides showed that the smaller the molecular weight, the earlier the appearance of ice crystals and the higher the enthalpy of heat release. For the smallest peptides, the 2-Bp-4 in 2-Bp group exhibited higher enthalpy in exothermic peak than the control group (c-4). In conclusion, the hydrolysis of seed globulins and accumulation of small-molecule globulin peptides could be the major reason for improving the freezing tolerance of hydrated seeds after de-palmitoylation treatment.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3