Abstract
AbstractCultivated northern wild rice (NWR; Zizania palustris L.) has been bred and studied since the 1950s. One challenge facing researchers is the lack of storage options, due to the seed's unorthodox behaviour. This study evaluated varying storage temperature and moisture conditions for the maintenance of seed viability and dormancy breaking in Minnesota-grown NWR. First, seeds were placed in non-submerged, freezing storage (NSFS) for 12–26 weeks, then in submerged, cold storage (SCS) for 2 weeks. The addition of SCS increased germination (%G) relative to NSFS alone (<0.1% NSFS, 15% NSFS and SCS), indicating that NSFS does not kill seeds but also does not break seed dormancy. Next, the required length of SCS was evaluated by placing seeds in NSFS for 12 weeks and then in SCS for 2–14 weeks. A longer SCS period increased %G from 3 to 79%, at 2 and 14 weeks of SCS, respectively. Lastly, seeds were placed in NSFS, followed by SCS, at varying intervals over a 29-week period. Across lines, germination increased from 20 to 76% between 4 and 7 weeks of SCS, respectively, then plateaued. The results of this study indicate that NSFS could be used to store NWR seeds, but at least 7 weeks in SCS is required to overcome dormancy. Additionally, while NSFS did not break seed dormancy, physiological changes related to stratification processes were occurring in non-submerged, freezing conditions. Results also suggest that the genotypic variation in NWR could be utilized for selection to improve germination and storage viability.
Publisher
Cambridge University Press (CUP)
Reference43 articles.
1. Understanding poor storage potential of recalcitrant seeds;Umarani;Current Science,2015
2. Ecological aspects of seed desiccation sensitivity
3. Rstudio-team (2016) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.
4. Effects of environmental variation during seed production on seed dormancy and germination;Penfield;Journal of Experimental Botany,2016
5. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献