Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential

Author:

Dahal Peetambar,Bradford Kent J.

Abstract

AbstractBoth temperature (T) and water potential (ψ) have consistent and quantifiable effects on the rate and extent of seed germination (radicle emergence). Germination at suboptimal T can be characterized on the basis of thermal time, or the T in excess of a base (Tb) multiplied by the time to a given percentage germination (tg). Similarly, germination at reduced ψ can be characterized on a hydrotime basis, or the ψ in excess of a base (ψb) multiplied by tg. Within a seed population, the variation in thermal times to germination for a specific percentage (g) is based upon the normal distribution of ψb values among seeds (ψb(g)). Germination responses across a range of suboptimal T and ψ might be accounted for by a general hydrothermal time model incorporating both T and ψ components. We tested this hypothesis for tomato (Lycopersicon esculentum Mill.) seeds of two genotypes differing in germination rates and tolerance of suboptimal T and ψ. For combinations of T (10−25°C) and ψ (0 to −0.9 MPa), a general hydrothermal time model accounted for approximately 75% of the variation in times to germination within the seed populations of both genotypes, and over 96% of the variation in median germination rates. However, ψb(g) distributions were sensitive to both the T and ψ of imbibition, resulting in a poor fit of the model to specific time course data. Analysis of germination timing separately for low and high ψ ranges within a given T resulted in specific models accounting for 88−99% of the variation in individual germination times and >99% of the variation in madian germination rates. Thus, for a given T and ψ range, the hydrotime model closely matched tomato seed germination time courses. Accumulated hydrothermal time accounted well for germination rates at ψ> −0.5 MPa across suboptimal T if ψb(g) was allowed to vary with T. Germination did not show a consistent response to T at ψ < −0.5 MPa, and estimated Tb values varied over different T ranges. Generalization of the hydrothermal time model across the entire range of suboptimal T and ψ was limited by physiological adjustments of the seeds to their current environment. The hydrothermal time model detected and quantified these adjustment processes that would otherwise not be evident from inspection of germination time courses. Temperature and water potential influence the time to germination via physiological mechanisms that reciprocally interact.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3