Seed germination of mudflat species responds differently to prior exposure to hypoxic (flooded) environments

Author:

Phartyal Shyam S.ORCID,Rosbakh SergeyORCID,Poschlod PeterORCID

Abstract

AbstractMudflats are exposed for short periods after flood water drawdown. They support fast-growing annual herbs with a ruderal strategy. To optimize their recruitment success, seeds of mudflat species germinate better under fluctuating temperatures, full illumination and aerobic environments that indicate the presence of optimal (non-flooded) conditions for plant growth and development. Here, we hypothesize that prior exposure of mudflat seeds to hypoxic (flooded) environment interferes with the germination process and results in more vigorous germination once aerobic conditions are regained. To test this hypothesis, seeds of five mudflat species were incubated in both aerobic and hypoxic environments at four (14/6, 22/14, 22/22 and 30/22°C) temperature regimes, reflecting different (seasonal) conditions when drawdowns may occur. All species responded positively to four temperature regimes; however, moderate 22/14 and 22/22°C temperatures were optimum for high percentages and rates (speed) of seed germination. Since seeds of four species germinated exclusively under aerobic conditions, they were moved from hypoxic to aerobic conditions. Prior exposure of seeds to hypoxic environment facilitated high percentages, rates and synchronization of germination of Limosella aquatica, Peplis portula and Samolus valerandi seeds compared to incubation under strict aerobic conditions. However, prior exposure to hypoxic environment induced secondary dormancy in non-dormant seeds of Hypericum humifusum but broke dormancy in Lythrum hyssopifolia seeds that otherwise required cold stratification to overcome physiological dormancy. All species that have a narrow ecological niche (strictly occurring in mudflat habitats) showed positive responses to prior exposure to hypoxic environments. In contrast, H. humifusum that has a wide ecological niche (from mudflats to moist sandy grasslands) showed a negative response. We conclude that the hypoxic environment may strongly affect seed germination behaviour once the aerobic environment is regained. The most striking effect is the acceleration of the germination process and, therefore, life cycle supporting the survival in an ephemeral habitat.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3