Abstract
AbstractCumulative oxidative damage from the unavoidable formation of reactive oxygen species (ROS) contributes to seed ageing. Low-molecular-weight (LMW) antioxidants, such as water-soluble glutathione (GSH) and lipid-soluble tocochromanols, can prevent ROS from causing damage, especially when antioxidant enzymes are inactive due to desiccation. However, loss of tocochromanols does not always accompany seed ageing, such as during accelerated ageing or controlled deterioration, despite the presence of oxygen and prevalent loss of GSH. To assess relationships between total germination (TG) and antioxidant changes under storage conditions with practical relevance, commercial seeds of Cucumis sativus, Daucus carota, Helianthus cucumerifolius, Latuca sativa, Lepidium sativum, Phaseolus vulgaris and Raphinus sativus of the same cultivar were obtained over multiple years and stored under ambient conditions (21.9 ± 2.1°C; 36.8 ± 6.6% relative humidity). Sigmoidal fitting of TG revealed time to when 50% of seeds had lost viability, which ranged from <5 years (D. carota) to >15 years (C. sativus). Cellular redox states were quantified via the half-cell reduction potential of LMW thiol/disulphide couples. These negatively correlated with TG (i.e. cell redox states were more oxidized in lots with lower TG), with an average R2 value of 0.62 for the most abundant thiol (GSH, or γ-glutamyl-cysteine in P. vulgaris). Concentrations of tocochromanols positively correlated with TG, with an average R2 value of 0.50 for the most abundant tocochromanol (γ or α in L. sativa and H. cucumerifolius). Therefore, during viability loss under ambient ageing conditions leading to the cytoplasm having a glassy state, the lipid domain in all species experienced oxidative damage.
Publisher
Cambridge University Press (CUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献