Thermal requirements of seed germination of ten tree species occurring in the western Brazilian Amazon

Author:

Daibes L. FelipeORCID,Amoêdo Semirian C.,Nascimento Moraes Jeane do,Fenelon Natália,da Silva Débora Rosa,de Melo Lopes Max Jr,Vargas Lidiane A.,Monteiro Ediléia F.,Frigeri Renita B.C.

Abstract

AbstractRegeneration from seed affects species assembly in plant communities, and temperature is the most important environmental factor controlling the germination process. Thermal dependence of seed germination is thus associated with species occurrence in an ecosystem. Hence, we aimed to investigate the role of temperature on seed germination of ten tree species from the western Brazilian Amazon. Seeds were collected in the state of Rondônia, Brazil, and set to germinate under constant temperatures ranging from 10 to 40°C in germination chambers. We calculated germination capacity (G%), germination rate (GR50, reciprocal of germination time), and thermal parameters, such as cardinal temperatures and thermal time requirements. Most species had a large range of temperatures showing G% ≥80%, with optimal temperature varying from 20 to 40°C. Base temperature ranged from 6 to 12°C and ceiling temperatures were mainly >40°C. Astronium lecointei and Parkia nitida showed high germination capacity under temperatures of 35–40°C, while germination of Theobroma cacao dropped from 100% to zero under temperatures between 37 and 40°C. The climax species Cedrela fissilis had the slowest germination time (10 days) and highest thermal time requirement, while seeds of Enterolobium schomburgkii (a late-successional species) germinated within the first day of the experiment. Rapid recruitment of Amazon species could be favoured with treefall disturbance, which increases temperatures in the understory, but sharp limits might be found in the supra-optimal range of temperatures. Such patterns might indicate different regeneration strategies in the tropical rainforest, providing important information regarding seed germination among Amazon species.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3