Stress–response relationships related to ageing and death of orthodox seeds: a study comparing viability and RNA integrity in soya bean (Glycine max) cv. Williams 82

Author:

Walters Christina,Fleming Margaret B.,Hill Lisa M.,Dorr Emma J.,Richards Christopher M.

Abstract

AbstractCharacterizing non-lethal damage within dry seeds may allow us to detect early signs of ageing and accurately predict longevity. We compared RNA degradation and viability loss in seeds exposed to stressful conditions to quantify relationships between degradation rates and stress intensity or duration. We subjected recently harvested (‘fresh’) ‘Williams 82’ soya bean seeds to moisture, temperature and oxidative stresses, and measured time to 50% viability (P50) and rate of RNA degradation, the former using standard germination assays and the latter using RNA Integrity Number (RIN). RIN values from fresh seeds were also compared with those from accessions of the same cultivar harvested in the 1980s and 1990s and stored in the refrigerator (5°C), freezer (−18°C) or in vapour above liquid nitrogen (−176°C). Rates of viability loss (P50−1) and RNA degradation (RIN⋅d−1) were highly correlated in soya bean seeds that were exposed to a broad range of temperatures [holding relative humidity (RH) constant at about 30%]. However, the correlation weakened when fresh seeds were maintained at high RH (holding temperature constant at 35°C) or exposed to oxidizing agents. Both P50−1 and RIN⋅d−1 parameters exhibited breaks in Arrhenius behaviour near 50°C, suggesting that constrained molecular mobility regulates degradation kinetics of dry systems. We conclude that the kinetics of ageing reactions at RH near 30% can be simulated by temperatures up to 50°C and that RNA degradation can indicate ageing prior to and independent of seed death.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3